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CALCAGNETTI .  D. J., J. J. FLYNN AND D. L. MARGULES.  Opioid-induced linear running in obese (ob/ob) and lean 
mice. PHARMACOL BIOCHEM BEHAV 26(4) 743-747. 1987,~E~,rlier research has shown that opioids stimulate behav- 
ioral activation in mice whereas opioid antagonists attenuate this activation. We conducted an experiment to determine the 
dose-response curve of FK33824, a potent Met-enkephalin analogue. FK33824 produced an unusual form of behavioral 
activation we called "linear running" in which lhe mice ran continuously in one direction and were nearly oblivious to 
environmental stimuli. This may be the kind of running that occurs naturally during migration. Wheel running activily of 
genetically obese (ob/ob) and lean (C57BL/6J ?/+ ) mice was measured following the intracerebroventricular infusion of 0. I, 
1.0, 10.0 and 100.0 ng of FK33824. The lowest dose did not alter baseline running, whereas the 1.0 and 10.0 ng doses 
significantly increased running in both genotypes. We found a genotype difference with the highest close tested, the lean 
mice ran at baseline levies and displayed ataxia whereas the obese mice continued to show increased running without 
ataxia. We hypothesize that genetic differences in the enkephalin mechanisms of C57 lean and obese mice are responsible 
for linear running. 
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IN mammals acutely administered opioid ligands (e.g.. mor- ning was first reported by Ukai and Kameyama [47] ho 
phine, methadone, etonitazene and heroin) induce behav- ever, these authors did not relate it tO migration. 
ioral depression in some species (rat, dog, monkey, human), Of several strains of  mice tested, the C57BL/6J mot 
and excitatory behavior in others such as the mouse [6, 11. strain displays the greatest locomotor activation [7,34] a 
35]. Following morphine administration mice display in- lowest analgesia after peripheral administration of  morphi 
creased exploration, rearing, hopping, grooming and non- [14, 35, 36, 38]. In the C57 mouse, morphine releases stria 
linear "running fi ts" [7, 12, 34, 43]. Naloxone readily re- dopamine (DA) [37,38] and leads to an activation of stria 
verses opiate-induced behavioral activation in mice [6] but DA receptors [44]. It has been suggested that this gene 
fails (at doses of  1.0, 3.0, and 10.0 mg/kg) to effect baseline difference among mouse strains is due to the larger prop, 
running [7,47]. These findings suggest an opioid component tion of delta to mu opioid receptors on DA striatal fibers 
mediating behavioral activation in the mouse, the C57BL/6J strain [3]. The genetically obese mutant mot 

Intracerebroventricular  (ICV) injections of the relatively (ob/ob) which differs from its lean counterpart  by a sinl 
stable enkephalin (ENK) analogues D-Ala-2-Met-en- gene is available on the C57BL/6J backround. This muta 
kephalin-amide and D-Ala-2-Leu-enkephalin-amide (25 and has multiple hormonal and behavioral abnormalities [15,! 
50/~g/mouse), into the mouse, significantly increased behav- including obesity,  overeating, hyperinsulinemia, hyperg 
ioral activation as measured by activity platforms [27]. This cemia, reproductive problems, impaired thermoregulatic 
activation was rather brief (20 min) and was readily reversed thyroid insufficiency, growth retardation [4], shortened 1 
by naloxone (4 and 8 mg/kg). Similar increases in locomotion span and greatly reduced locomotor activity [29,49]. In a pi 
were found in mice given ICV MET-enkephalin (100 /.~g), study a l p.g ICV injection of  FK33824 in mice produc 
Leu-enkelahalin (200 ~.g), gamma-endorphin (5 and 10 p,g) " l inear  running" (best characterized as a sustained, 
[23], alpha-endorphin (20/~g) [22], and dynorphin (0.3 and 1 idirectional and compulsive wheel running). Two of  ei$ 
p.g) [25, 46]. Met- and Leu-enkephalin have been shown to pilot obese mice died within two hours (possibly fr( 
produce 2-15 min increases in analgesia and locomotion exhaustion), none of  the nine ataxic lean mice died. 
probably because they are readily degraded [8,23]. These Based on these findings, we hypothesized that both obe 
studies did not provide information on the question of linear and lean mice of the C57BL/6J strain would display iin~ 
running necessary for navigation toward a goal. Linear run- running given a long-acting ENK analogue ICV. The s t 
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thetic Met-enkephalin analogue, FK33824, was chosen for 510,, 
two reasons: I l) it is highly resistant to degradation by pep- ~ 470.[ 
tidases [ 19.39, 40], and (2) it has high affinity for the mu and 

dig / 
delta opioid binding sites [48]. In the present work we meas- ~ 430"1 LEAN 
ured wheel running of obese and lean mice from the _z 3 9 0  4 
C57BL/6J strain to determine the dose-response curve of ~ 350"1 
FK33824-induced linear running in both lean and obese mice o 310 • o 
alter ICV injection. 2 7 0  

2 3 0  
"J a.-.o VEHICLE 

METHOD ~' 40 
.~ - .---  DRUG 

3".,'#,.cts ~-~ 30. 
The subjects were male obese mice (oh/ob) and lean ~ +/?) • OSESE 

littermates of the C57BL/6J strain raised in our colony. All z 20 o O O ~ "  * ~  * e e  • e e  • e e  

subjects were six months old at the time of surgery. The mice ~ i ? " - - - ~  . . . .  o . , , , , ,~  
were individually housed in stainless steel shoe box cages ,- 10o 
and provided ad lib food (Purina mouse chow No. 5015) and 
distilled water. They were housed and tested in an isolated .o 
room maintained at 23~C with a 12:12 hr light:dark cycle with 0 0.1 1~o 1~0 lO()JO 
dark onset at 1130 hr. DOSE OF FK33824 ng ICY 

FIG. 1. Median wheel revolutions per 30 min for obese (n=9) al 
lean m=9) mice are shown with one of four doses of FK33824 (0. 

Surgery 1.0, 10.0 and 100.0 ng/mouse) ICV. The asterisks indicate signi 
Mice were anesthetized with Nembutal (80 mg/kg). A 26 cance using Wilcoxon's test comparison (*=p<0.05, **=p<0: 

gauge stainless steel outer cannula (Plastic Products Co.. and ***=p<0.01~. 
Roanoke, VA) was stereotaxically implanted into the right 
lateral ventricle (coordinates used were 3 mm posterior to 
bregma, 1 mm lateral to midline, and 2 mm ventral to the For the next seven days the mice were adapted to the ru 
surface of the cortex) with the skull leveled between lambda ning wheels. Adaptation consisted of removing and replaciz 
and bregma, the dummy cannula followed by a one hour wheel runniJ 

session (beginning at 1530 hr) on two consecutive days, on, 
Drm,,s and Injection a week. Daily testing began on the following week wi 

obese and lean body weights averaging 62.0 g (SD=4.1) al 
FK33824 [Tyr-D-Ala-Gly-MePhe-Met(OI ol, a gift from 29.4 g ISD=2.5) respectively. Pilot data (with other subjec 

Dr. D. Roemer of Sandoz Ltd.. Basel. Switzerland] was dis- not included in this study) suggested wheel running could I 
solved in 0.1 M acetic acid and aliquotted into siliconized sampled best by the following schedule: ICV injection 
glass bottles. The peptide was lyophilized, stoppered under vehicle tbllowed in 15 rain by a 30 rain running session (tl 
vacuum, and then stored at 4°C. FK33824 was reconstituted control sessiont; 15 min in the home cage followed by an IC 
on the day of use with filter sterilized (Millex-GV 0.22/xm. vehicle or drug injection and an additional 15 rain of rest aft 
Millipore Corp., Bedford, MA) artificial cerebrospinal fluid which followed a second 30 rain running session tthe te 
~ACSF) containing 78.0 mM NaCI, 2.5 mM KCI. 50 mM session!. 
NaHCO:~, 1.3 mM CaCO:~, and 1.3 mM NgCI._, [45]. The testing schedule began with 2 days of ICV vehic 

The ICV injections were performed by backloading the injections t I ~zl ACSF) for both the vehicle and test runni~ 
drug up a 33 gauge internal cannula (Plastic Products) into sessions. For the next tour days, vehicle was injected 15 m 
PE-20 tubing i Intramedic No. 7406). An injection volume of prior to the control session and FK33824 was injected 15 m 
1 p.l was delivered by a 2 p.l syringe (Hamilton No. 7002) prior to the test session. 
mounted in a repeating pushbutton device (Hamilton No. PI3 
00-1 ) at a rate of 1 /.d/40 sec. Four doses of FK33824 ( 100.0. Statistical Analysis 
I0.0. 1.0. 0. I ng, mouse) were administered in a descending Since we made no assumption regarding the form of tt 
dose order. ACSF served as vehicle as well as control injec- population distribution and due to initial heterogeneity 
tion. variance across cells, statistical analysis was performed t 

non-parametric tests. A within-subjects repeated measur, 
Apparatus design was used to evaluate drug effects. The wheel runni~ 

counts were anlayzed with Friedman's non-parametr 
The running of each mouse was measured with a rat ac- 2-way ANOVA by ranks [28] followed by Wilcoxon 

tivity wheel tLafayette Instrument Co., No. 86041) modified Matched-Pair signed-ranks test to determine significa: 
for mice by substituting a common pet store running wheel differences between control and test sessions as well as d~ 
tdiameter= 16 cml for the galvanized steel wheel. The wheel to day comparisons [42]. Wheel running was quantified t 
was connected to the counter such that one wheel revolution the number of wheel revolutions Icounts per 30 minl f~ 
yielded one count. All wheels were sealed on both sides to control and test sessions. 
prevent the mice from escaping. 

Procedure RESULTS 

The mice were given 2 weeks to recover from surgery. On every occasion all lean mice ran more than obese mk 
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TABLE 1 linear running, but rather produce grooming, hopping a 
DEPICTS THE MINIMUM (MIN) AND MAXIMUM (MAX) WHEEL intermittent nondirected running fits. The mice giv 
RUNNING SCORES OEOBESE AND LEAN MICE (RANGE PER FK33824 also displayed stereotypic straub tails, recumb~ 

VEHICLE AND FK33824 TREATMENT~ ears. an elevated rear posture and muscle rigidity. 
The lowest dose did not significantly increase runnil 

Dose 0.0 0.1 1.0 l0 100 However, the 1.0 and 10.0 ng doses significantly increas 
running in both genotypes. The running of obese mice 

Obese Mice more dramatically increased as a percentage of baseline. 
FK33824 the highest dose tested, the obese mice continued to displ 

Min 4 5 12 7 8 increased running relative to baseline, but the lean mice r 
Max 68 77 164 267 195 only at baseline levels and displayed ataxia. This findi 

indicates that genotype is an important factor. Additiol 
Vehicle evidence further suggests genotype differences sin 

Min 2 5 9 4 2 peripheral injection of FK33824 (3.0, 6.0 and 12.0 mg/kg S 
Max 71 70 47 41 61 produced significant linear running in obese but not le 

mice for up to 2, 5 and 7 hours respectively [9]. 
Lean Mice Pilot data using mice (n=4 lean and n=4 obese) run ." 

FK33824 cording to the procedure suggests that opioid-induced rt 
Min 107 5 58 103 93 ning is centrally mediated. We observed that subcutanec 
Max 572 643 595 770 582 (SC) injections of the centrally active opioid antagonis 

naloxone (2.0 mg/kg), naltrexone (1.25 mg/kg) and the kap 
Vehicle specific opiate receptor antagonist, MR-2266 (2.0 mg/kg), 

Min 78 7 93 79 156 fectively stopped FK33824-induced running within a two n 
Max 563 635 429 603 500 period after ICV administration of FK33824 (3.0 ng). Ho 

ever. running resumed after a period of time (20 rain-1 hr) 
which it was reasonable to assume that the antagonist wc 
off within the 2 hr period in which FK33824 is known 
remain effective. These mice were also given the quatern~ 

tit follows that all comparisons were made within each form of naltrexone (naltrexone methobromide, QNT, ~ 
genotype). FK33824 produced significant dose-related in- which dose not cross the blood-brain barrier at moden 
creases in running for both obese and lean mice [Friedman's doses [5]. QNTX t6 mg/kg SC) failed to block FK33824- 
analysis yielded X~4)=20.I1, p<0.002] and [~r2(4)=14.8, mg/kg SC and 3.0 ng ICV) induced running nor did it bio 
p<0.02 respectively], the behavioral activation produced by morphine (3 mgl 

Figure I summarizes the median wheel revolutions SC, manuscript in preparation). Collectively these data st 
(counts per 30 rain) for obese and lean mice in both the port the hypothesis that FK33824-induced linear running 
control and test sessions. Vehicle alone and the 0.1 ng dose centrally mediated. 
of FK33824 did not produce reliable differences from base- We do not propose that the behavioral activati 
line running for either genotype. The three highest doses of produced by opioid ligands is specific to opioids just becaL 
FK33824 produced significant increases in obese mice run- their effects are reversed by naloxone. More pharmacoio 
ning relative to baseline (Wilcoxon tests yielded p<0.01, cal evidence is necessary to establish specificity since 
p<0.05 and p<0.01 respectively). Significantly increased variety of substances produce a general behavioral acti~ 
wheel running was also found in the lean mice with the 1.0 tion in the mouse including scopolamine [1,41], phen~ 
and 10.0 ng doses (Wilcoxon tests yeilded p<0.01 and clidine [13], ethanol [30], and ACTH [18]. Exposure to ion 
p<0.02 respectively). However, the 100.0 ng dose did not ing radiation and nitrous oxide also stimulate locomotion 
produce reliably increased wheel running in the lean mice; at mice [20,33]. Several direct and indirect dopamine (D 
this dose the lean mice became ataxic. Table 1 depicts the agonists (L-dopa, apomorphine, pergolide, bromoergocr3 
minimum and maximum range of wheel running scores for tine and d-amphetamine) also produce dose-dependent : 
lean and obese mice during vehicle and FK33824 1/, hr run- creases in locomotion in mice [2, 16, 21, 32, 49]. The beh~ 
ning sessions, ioral activation of these substances/techniques also is~ 

At the conclusion of the experiments, the mice were in- versed by naloxone [10, 20, 33]. Naloxone reversibil 
jected ICV with 2 ~1 of ink and immediately sacrificed by suggests that a common underlying opioid mechanism exi: 
cervical dislocation. The brains were removed and coronal in the regulation of hyperlocomotion and this remains to 
sections were made along the cannula tract. Visual inspec- demonstrated and documented. 
tion confirmed that all cannulae placements allowed access In summary, FK33824 produces a specific form ofacti~ 
to the right lateral ventricle as shown by ink staining, tion we call linear running that is different from the "runni 

fit" produced by morphine. FK33824 binds selectively to r 
DISCUSSION and delta type opioid receptors [48]. The delta receptor 

pharmacologically defined as the receptor with high affin: 
We measured linear running in contrast to published for ENK but low affinity for morphine [17]. One hypothe 

measurements of nondirected locomotor activation [25-27, why FK33824-induced linear running is different than t 
43, 49] or graded movement in mice [22-24, 46]. Nanogram morphine running fit is that FK33824 may act primarily 
quantities of ICV FK33824 produced significant increases in opioid receptors of the delta type on DA cells in the mou 
coordinated wheel running in both genotypes. This effect of striatum that are critical for initiating and maintaining per, 
FK33824 is in contrast to the locomotor activation by mor- verative linear locomotion. Further study Using more seh 
phine and related compounds which do not produce solely tive mu and delta agonists and antagonists is required 
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elucidate  the mechan i sm producing l inear running• It has not locomot ion  in mice may serve  as a laboratory  model  to stL 
e scaped  our  notice that  this opio id- induced compuls ive  migration-like behavior•  
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